Myeloproliferative Neoplasms - MPN

Primary Authors: Kelley, Todd, MD, MS. Salama, Mohamed E., MD.

  • Key Points
  • Diagnosis
  • Background
  • Pediatrics
  • Lab Tests
  • References
  • Related Content

Molecular Genetics of BCR-ABL1-Negative Myeloproliferative Neoplasms

Myeloproliferative neoplasms (MPNs) are associated with dysregulation of tyrosine kinases, leading to abnormal downstream signaling pathways and increased cellular proliferation. The presence of the BCR-ABL1 mutation characterizes chronic myelogenous leukemia (CML). For BCR-ABL1-negative MPNs, new molecular markers have implications for classification, diagnosis, and prognosis.

Content in tables below based on Chaligné R, et al., 2007; Guglielmelli P, et al., 2009; Klampfl T, et al., 2013; Nangalia, 2013; Schmidt AE, et al, 2012; Vainchenker W, et al., 2011; Vakil E, et al., 2011; Teferri, 2015

 

Indications for Testing

  • Refer to Key Points section

Criteria for Diagnosis

Laboratory Testing

  • Initial testing – CBC with differential, erythropoietin (EPO) level, uric acid, lactate dehydrogenase
    • ​Subnormal EPO level highly suggestive of PV if anemia is present
    • Normal or increased EPO makes PV unlikely and warrants evaluation for congenital or acquired erythrocytosis
  • Rule out most common causes of anemia
  • Refer to Key Points section

Histology

  • Noneosinophilic MPN (classic MPN)
    • Bone marrow examination with cytogenetic analysis is generally performed after MPN gene testing
      • Not generally necessary if JAK testing is positive and PV suspected
      • May be necessary if ET is suspected since 15% of ET are so called “wild type” (triple negative for current molecular markers)
      • Often necessary for PMF – mutation presence does not distinguish between ET and PMF
  • Eosinophilic MPN
    • Molecular genetic testing
      • Myeloid neoplasms associated with eosinophilia and abnormalities in PDGFRA, PDGFRB, or FGFR1 gene
      • Cytogenetic and fluorescence in situ hybridization (FISH) analysis for detection of FIP1L1-PDGFFA fusion, PDGFRB (5q33) translocations, or FGFR1 (8p11) translocations
      • In the absence of these molecular markers, chronic eosinophilic leukemia (CEL), not otherwise specified (NOS) (CEL-NOS), or hypereosinophilic syndrome (HES) should be considered
        • Diagnosis in both CEL-NOS and HES requires the following
          • Presence of ≥1.5x109/L eosinophil count – peripheral blood
          • Exclusion of secondary eosinophilia
          • Exclusion of other acute or chronic myeloid neoplasm
          • No evidence for phenotypically abnormal or clonal T lymphocytes
        • Diagnosis of HES requires the absence of both cytogenetic abnormality and ≥2% peripheral blasts or ≥5% bone marrow blasts
  • Mast cell MPNs – CD117 (c-Kit), CD25 testing

Prognosis

  • Classic MPN
    • JAK2 V617F – quantitative testing may predict degree of fibrosis, thrombotic tendencies, or survival
    • Karyotyping in PMF
      • Unfavorable – complex karyotype or ≥1 abnormality, including +8, -7/7q-, i(17q), -5/5q-, 12p-, inv(3), or 11q23
  • Eosinophilic MPN
    • inv(1) – favorable prognosis, unless associated with KIT mutation
    • PDGFRA and PDGFRB mutations – good prognosis with favorable response to tyrosine kinase inhibitors (TKIs)
    • FGFR1 mutations – poor prognosis with unclear response to TKIs

Differential Diagnosis

  • Thrombocytosis
    • Primary pulmonary fibrosis and hypertension
    • Malignancy
    • Infection
    • Leukemia
    • Connective tissue diseases
    • Drugs – corticosteroids, adrenaline
    • Hemolysis
    • Hyposplenism
    • Congenital thrombocytosis (very rare)​
  • Erythrocytosis
    • Hypoxia driven processes
      • High altitude habitat
      • Hypoxic lung disease
      • Right to left cardiopulmonary shunts
      • Carbon monoxide poisoning
      • Sleep apnea
      • Renal artery stenosis
    • Hypoxia – independent processes
      • Drugs (eg, testosterone)
      • EPO-producing tumors (eg, renal cell, hepatocellular)
      • Renal cysts
      • Renal transplant
  • Thrombocytopenia
  • Anemia
    • Vitamin/mineral deficiency – B12ironfolate
    • Chronic disease – renal, liver
    • Thyroid disease
    • Gastrointestinal bleeding – peptic ulcer disease, malignancy
    • Infection (eg, parvovirus)
  • Thromboses

Myeloproliferative neoplasms (MPN) are a group of slow-growing blood cancers, including chronic myelogenous leukemia (CML). MPNs present with clonal proliferation of abnormal hematopoietic cells that involve bone marrow and peripheral blood.

2008 WHO Classification of Myeloid Neoplasms and Acute Leukemia

Myeloproliferative neoplasms (MPN)

  • CML, BCR-ABL1-positive1
  • Chronic neutrophilic leukemia
  • Polycythemia vera1
  • Primary myelofibrosis1
  • Essential thrombocythemia1
  • Chronic eosinophilic leukemia (CEL), not otherwise specified (NOS)
  • Mastocytosis
    • Cutaneous mastocytosis
    • Systemic mastocytosis
    • Mast cell leukemia
    • Mast cell sarcoma
    • Extracutaneous mastocytoma
  • MPN, unclassifiable
Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1 gene

Myelodysplastic/myeloproliferative neoplasms

  • Chronic myelomonocytic leukemia
  • Atypical CML, BCR-ABL1-negative
  • Juvenile myelomonocytic leukemia
  • Myelodysplastic/myeloproliferative neoplasm, unclassifiable
  • Refractory anemia with ring sideroblasts associated with marked thrombocytosis2
Myelodysplastic syndromes
Acute myeloid leukemia (AML) and related precursor neoplasms
Acute leukemias of ambiguous lineage
1Considered classic MPN
2Provisional listing; subject to change

Selected MPNs

Myeloproliferative neoplasms are extremely rare in children.

Polycythemia vera (PV)

Epidemiology

  • Incidence – rare
  • Age
    • <0.1% with PV are <20 years
    • Two peaks – 5-6 years, 10-14 years

Clinical Presentation

  • Thromboses
    • Arterial – stroke
    • Venous – Budd-Chiari syndrome
  • Bleeding disorders
  • Splenomegaly common
  • Rubor
  • Pruritus – especially after hot bath
  • Erythromelalgia

Diagnosis

Indications for Testing

  • Refer to Key Points section

Criteria for Diagnosis

  • See Diagnosis tab for PV criteria

Laboratory Testing

  • Initial diagnosis – CBC with differential, uric acid, lactate dehydrogenase
  • Refer to Key Points section

Indications for Laboratory Testing

Tests generally appear in the order most useful for common clinical situations.
Click on number for test-specific information in the ARUP Laboratory Test Directory

Erythropoietin 0050227
Method: Quantitative Chemiluminescent Immunoassay

JAK2 Gene, V617F Mutation, Qualitative 0051245
Method: Polymerase Chain Reaction

Limitations

Only one point mutation is detected; exon 12 mutations are not detected

Limit of detection is 0.5% mutant allele

Follow Up

Bone marrow biopsy

Can confirm result with JAK2 V617F mutation, quantitation testing

JAK2 Gene, V617F Mutation, Quantitative 0040168
Method: Polymerase Chain Reaction

Limitations

Only the one point mutation is detected

Limit of detection is 0.2% mutant allele

Follow Up

Bone marrow biopsy

JAK2 Gene, V617F Mutation, Qualitative with Reflex to JAK2 Exon 12 Mutation Analysis by PCR 2012085
Method: Polymerase Chain Reaction

Limitations

JAK2 V617F qualitative

  • Only one point mutation is detected
  • LOD is 0.5% mutant allele

JAK2 exon 12 mutation

  • Only exon 12 mutations are detected
  • LOD – 1/1,000 cells

JAK2 Gene, V617F Mutation, Qualitative with Reflex to CALR (Calreticulin) Exon 9 Mutation Analysis by PCR with Reflex to MPL codon 515 Mutation Detection by Pyrosequencing, Quantitative 2012084
Method: Polymerase Chain Reaction/Capillary Electrophoresis/Pyrosequencing

Limitations

JAK2 V617F qualitative

  • Only one point mutation is detected
  • LOD is 0.5% mutant allele

CALR exon 9

  • Detects only exon 9 indel mutations and does not detect mutations in other regions of the CALR gene
  • Results must be interpreted in the context of morphological and other relevant data
  • Test should not be used alone to diagnose malignancy

MPL codon 515

  • Does not detect mutations in other locations within the MPL gene
  • LOD – 5% mutant allele

Myeloid Malignancies Somatic Mutation and Copy Number Analysis Panel 2012182
Method: Massively Parallel Sequencing/Genomic Microarray (Oligo-SNP Array)

Limitations

Mutations may be present below the limit of detection

Not intended to detect minimal residual disease

Myeloid Malignancies Mutation Panel by Next Generation Sequencing 2011117
Method: Massively Parallel Sequencing

Limitations

Mutations may not be present below the limit of detection

Not intended to detect MRD

JAK2 Exon 12 Mutation Analysis by PCR 2002357
Method: Polymerase Chain Reaction

Limitations

Only exon 12 mutations are detected

Limit of detection is 1/1,000 cells

MPL codon 515 Mutation Detection by Pyrosequencing, Quantitative 2005545
Method: Polymerase Chain Reaction/Quantitative Pyrosequencing

Limitations

Does not detect mutations in other locations within the MPL gene

Limit of detection for this test is 5% mutant allele

CALR (Calreticulin) Exon 9 Mutation Analysis by PCR 2010673
Method: Polymerase Chain Reaction/Capillary Electrophoresis

Limitations

Detects only exon 9 insertion/deletion mutations; does not detect mutations in other regions of the CALR gene

Results must be interpreted in the context of morphological and other relevant data

Test should not be used alone to diagnose malignancy

Myeloproliferative Disorders Panel by FISH 2002360
Method: Fluorescence in situ Hybridization

Limitations

Detects only rearrangements targeted by the probes

Eosinophilia Panel by FISH 2002378
Method: Fluorescence in situ Hybridization

Limitations

Does not detect rearrangements associated with chronic myelogenous leukemia

Translocation partners of PDGFRB gene on chromosome 5q33 and FGFR1 gene on chromosome 8p11 not identified by this test

Chromosome Analysis, Bone Marrow 2002292
Method: Giemsa Band

Follow Up

Repeat testing as clinically indicated to monitor disease progression

Chromosome FISH, Interphase 2002298
Method: Fluorescence in situ Hybridization

Limitations

Limit of detection is probe dependent and around 2-5% in interphase nuclei

Many of these abnormalities can also be detected in myelodysplastic syndromes and AML and are therefore not sufficient for diagnosis but are consistent with the suspected diagnosis (exceptions are mutations in PDGFRA and PDGFRB, which are specific for MPNs)

Follow Up

Repeat testing as clinically indicated to monitor disease progression

CD117 (c-Kit) by Immunohistochemistry 2003806
Method: Immunohistochemistry

CD25 by Immunohistochemistry 2003544
Method: Immunohistochemistry

Leukemia/Lymphoma Phenotyping by Flow Cytometry 2008003
Method: Flow Cytometry

Oxygen Dissociation (P50) by Hemoximetry 2002984
Method: Spectrophotometry/Clark Electrode

Limitations

A simultaneously drawn control specimen from a healthy, nonsmoking individual who is not biologically related to the patient is required for meaningful interpretation

Specimens must be analyzed within 48 hours of collection (P50 value decreases with time)

Will not distinguish between the possible causes for decreased P50 value, which include 2,3-DPG deficiency; high-oxygen-affinity Hb variants; methemoglobinemia; carboxyhemoglobinemia

Decreased P50 values in chronic smokers (carboxyhemoglobinemia) should be interpreted with caution; Hb has higher affinity for carbonmonoxy than for oxygen

P50 values should be correlated with age; HbF may produce a decreased P50 level

von Hippel-Lindau (VHL) Sequencing 2002970
Method: Polymerase Chain Reaction/Sequencing

Limitations

Large deletions and duplications, deep intronic mutations, and regulatory region mutations are not detected

Rare diagnostic errors may occur due to primer-site mutations

PV due to causes other than VHL gene mutations are not detected

Additional Tests Available

CBC with Platelet Count and Automated Differential 0040003
Method: Automated Cell Count/Differential

Comments

Initial screen for MPN

EPOR Mutation Detection by Sequencing 2007914
Method: Polymerase Chain Reaction/Sequencing

Comments

Confirm a diagnosis of primary familial or congenital polycythemia (PFCP)

Guidelines

Gotlib J. World Health Organization-defined eosinophilic disorders: 2014 update on diagnosis, risk stratification, and management. Am J Hematol. 2014; 89(3): 325-37. PubMed

Harrison C, Bareford D, Butt N, Campbell P, Conneally E, Drummond M, Erber W, Everington T, Green A, Hall G, Hunt B, Ludlam C, Murrin R, Nelson-Piercy C, Radia D, Reilly J, Van der Walt J, Wilkins B, McMullin M, British Committee for Standards in Haematology. Guideline for investigation and management of adults and children presenting with a thrombocytosis. Br J Haematol. 2010; 149(3): 352-75. PubMed

Mesa R, Verstovsek S, Cervantes F, Barosi G, Reilly J, Dupriez B, Levine R, Le Bousse-Kerdiles M, Wadleigh M, Campbell P, Silver R, Vannucchi A, Deeg J, Gisslinger H, Thomas D, Odenike O, Solberg L, Gotlib J, Hexner E, Nimer S, Kantarjian H, Orazi A, Vardiman J, Thiele J, Tefferi A, International Working Group for Myelofibrosis Research and Treatment (IWG-MRT). Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): Consensus on terminology by the international working group for myelofibrosis research and Leuk Res. 2007; 31(6): 737-40. PubMed

Protocol for the Examination of Specimens From Patients With Hematopoietic Neoplasms Involving the Bone Marrow. Based on AJCC/UICC TNM, 7th ed. Protocol web posting date: October 2009. College of American Pathologists (CAP). Northfield, IL [Accessed: Jun 2015]

Tefferi A, Vardiman J. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008; 22(1): 14-22. PubMed

Vardiman J, Hyjek E. World health organization classification, evaluation, and genetics of the myeloproliferative neoplasm variants. Hematology Am Soc Hematol Educ Program. 2011; 2011: 250-6. PubMed

General References

Cario H, McMullin M, Pahl H. Clinical and hematological presentation of children and adolescents with polycythemia vera. Ann Hematol. 2009; 88(8): 713-9. PubMed

Chaligné R, James C, Tonetti C, Besancenot R, Le Couédic J, Fava F, Mazurier F, Godin I, Maloum K, Larbret F, Lécluse Y, Vainchenker W, Giraudier S. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood. 2007; 110(10): 3735-43. PubMed

Gotlib J, Maxson J, George T, Tyner J. The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment. Blood. 2013; 122(10): 1707-11. PubMed

Guglielmelli P, Barosi G, Pieri L, Antonioli E, Bosi A, Vannucchi A. JAK2V617F mutational status and allele burden have little influence on clinical phenotype and prognosis in patients with post-polycythemia vera and post-essential thrombocythemia myelofibrosis. Haematologica. 2009; 94(1): 144-6. PubMed

Klampfl T, Gisslinger H, Harutyunyan A, Nivarthi H, Rumi E, Milosevic J, Them N, Berg T, Gisslinger B, Pietra D, Chen D, Vladimer G, Bagienski K, Milanesi C, Casetti I, Sant'Antonio E, Ferretti V, Elena C, Schischlik F, Cleary C, Six M, Schalling M, Schönegger A, Bock C, Malcovati L, Pascutto C, Superti-Furga G, Cazzola M, Kralovics R. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013; 369(25): 2379-90. PubMed

Klco J, Vij R, Kreisel F, Hassan A, Frater J. Molecular pathology of myeloproliferative neoplasms. Am J Clin Pathol. 2010; 133(4): 602-15. PubMed

Nangalia J, Massie C, Baxter E, Nice F, Gundem G, Wedge D, Avezov E, Li J, Kollmann K, Kent D, Aziz A, Godfrey A, Hinton J, Martincorena I, Van Loo P, Jones A, Guglielmelli P, Tarpey P, Harding H, Fitzpatrick J, Goudie C, Ortmann C, Loughran S, Raine K, Jones D, Butler A, Teague J, O'Meara S, McLaren S, Bianchi M, Silber Y, Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill K, Orchard K, Tauro S, Du M, Greaves M, Bowen D, Huntly B, Harrison C, Cross N, Ron D, Vannucchi A, Papaemmanuil E, Campbell P, Green A. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013; 369(25): 2391-405. PubMed

Orazi A, Germing U. The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia. 2008; 22(7): 1308-19. PubMed

Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L, Fanelli T, Bosi A, Vannucchi A, Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014; 123(10): 1552-5. PubMed

Schmidt A, Oh S, Education Committee of the Academy of Clinical Laboratory Physicians and Scientists. Pathology consultation on myeloproliferative neoplasms. Am J Clin Pathol. 2012; 138(1): 12-9. PubMed

Tefferi A, Barbui T. Essential Thrombocythemia and Polycythemia Vera: Focus on Clinical Practice. Mayo Clin Proc. 2015; 90(9): 1283-93. PubMed

Tefferi A, Skoda R, Vardiman J. Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol. 2009; 6(11): 627-37. PubMed

Tefferi A, Thiele J, Vannucchi A, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014; 28(7): 1407-13. PubMed

Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol. 2011; 29(5): 573-82. PubMed

Tefferi A. Polycythemia vera and essential thrombocythemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012; 87(3): 285-93. PubMed

Tefferi A. Primary myelofibrosis: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol. 2013; 88(2): 141-50. PubMed

Vainchenker W, Delhommeau F, Constantinescu S, Bernard O. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011; 118(7): 1723-35. PubMed

Vakil E, Tefferi A. BCR-ABL1--negative myeloproliferative neoplasms: a review of molecular biology, diagnosis, and treatment. Clin Lymphoma Myeloma Leuk. 2011; 11 Suppl 1: S37-45. PubMed

Vardiman J, et al. Myeloproliferative Neoplasms. In Swerdlow SH, et al. WHO Classification of Tumours of Haematoietic and Lymphoid Tissues, Lyon, France: IARC Press, 2008.

References from the ARUP Institute for Clinical and Experimental Pathology®

Abraham S, Salama M, Hancock J, Jacobsen J, Fluchel M. Congenital and childhood myeloproliferative disorders with eosinophilia responsive to imatinib. Pediatr Blood Cancer. 2012; 59(5): 928-9. PubMed

Agarwal N, Mojica-Henshaw M, Simmons E, Hussey D, Ou C, Prchal J. Familial polycythemia caused by a novel mutation in the beta globin gene: essential role of P50 in evaluation of familial polycythemia. Int J Med Sci. 2007; 4(4): 232-6. PubMed

Bruchova H, Merkerova M, Prchal J. Aberrant expression of microRNA in polycythemia vera. Haematologica. 2008; 93(7): 1009-16. PubMed

Bruchova H, Yoon D, Agarwal A, Mendell J, Prchal J. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol. 2007; 35(11): 1657-67. PubMed

Bruchova H, Yoon D, Agarwal A, Swierczek S, Prchal J. Erythropoiesis in polycythemia vera is hyper-proliferative and has accelerated maturation. Blood Cells Mol Dis. 2009; 43(1): 81-7. PubMed

Chen G, Liu E, Naidoo K, Popat U, Coetzer T, Prchal J. Idiopathic myelofibrosis without dacryocytes. Haematologica. 2006; 91(6 Suppl): ECR29. PubMed

Chen G, Prchal J. Polycythemia vera and its molecular basis: an update. Best Pract Res Clin Haematol. 2006; 19(3): 387-97. PubMed

Gaikwad A, Nussenzveig R, Liu E, Gottshalk S, Chang K, Prchal J. In vitro expansion of erythroid progenitors from polycythemia vera patients leads to decrease in JAK2 V617F allele. Exp Hematol. 2007; 35(4): 587-95. PubMed

Gaikwad A, Prchal J. Study of two tyrosine kinase inhibitors on growth and signal transduction in polycythemia vera. Exp Hematol. 2007; 35(11): 1647-56. PubMed

Hsieh P, Olsen R, O'Malley D, Konoplev S, Hussong J, Dunphy C, Perkins S, Cheng L, Lin P, Chang C. The role of Janus Kinase 2 V617F mutation in extramedullary hematopoiesis of the spleen in neoplastic myeloid disorders. Mod Pathol. 2007; 20(9): 929-35. PubMed

Jauregui M, Sanchez S, Ewton A, Rice L, Perkins S, Dunphy C, Chang C. The role of beta-catenin in chronic myeloproliferative disorders. Hum Pathol. 2008; 39(10): 1454-8. PubMed

Jovanovic J, Ivey A, Vannucchi A, Lippert E, Leibundgut O, Cassinat B, Pallisgaard N, Maroc N, Hermouet S, Nickless G, Guglielmelli P, van der Reijden B, Jansen J, Alpermann T, Schnittger S, Bench A, Tobal K, Wilkins B, Cuthill K, McLornan D, Yeoman K, Akiki S, Bryon J, Jeffries S, Jones A, Percy M, Schwemmers S, Gruender A, Kelley T, Reading S, Pancrazzi A, McMullin M, Pahl H, Cross N, Harrison C, Prchal J, Chomienne C, Kiladjian J, Barbui T, Grimwade D. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) stu Leukemia. 2013; 27(10): 2032-9. PubMed

Kapralova K, Lanikova L, Lorenzo F, Song J, Horvathova M, Divoky V, Prchal J. RUNX1 and NF-E2 upregulation is not specific for MPNs, but is seen in polycythemic disorders with augmented HIF signaling. Blood. 2014; 123(3): 391-4. PubMed

Lanikova L, Lorenzo F, Yang C, Vankayalapati H, Drachtman R, Divoky V, Prchal J. Novel homozygous VHL mutation in exon 2 is associated with congenital polycythemia but not with cancer. Blood. 2013; 121(19): 3918-24. PubMed

Lippert E, Girodon F, Hammond E, Jelinek J, Reading S, Fehse B, Hanlon K, Hermans M, Richard C, Swierczek S, Ugo V, Carillo S, Harrivel V, Marzac C, Pietra D, Sobas M, Mounier M, Migeon M, Ellard S, Kröger N, Herrmann R, Prchal J, Skoda R, Hermouet S. Concordance of assays designed for the quantification of JAK2V617F: a multicenter study. Haematologica. 2009; 94(1): 38-45. PubMed

Manshouri T, Quintás-Cardama A, Nussenzveig R, Gaikwad A, Estrov Z, Prchal J, Cortes J, Kantarjian H, Verstovsek S. The JAK kinase inhibitor CP-690,550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation. Cancer Sci. 2008; 99(6): 1265-73. PubMed

Nussenzveig R, Burjanivova T, Salama M, Ogilvie N, Marcinek J, Plank L, Agarwal A, Perkins S, Prchal J. Detection of JAK2 mutations in paraffin marrow biopsies by high resolution melting analysis: identification of L611S alone and in cis with V617F in polycythemia vera. Leuk Lymphoma. 2012; 53(12): 2479-86. PubMed

Nussenzveig R, Cortes J, Sever M, Quintás-Cardama A, Ault P, Manshouri T, Bueso-Ramos C, Prchal J, Kantarjian H, Verstovsek S. Imatinib mesylate therapy for polycythemia vera: final result of a phase II study initiated in 2001. Int J Hematol. 2009; 90(1): 58-63. PubMed

Nussenzveig R, Swierczek S, Jelinek J, Gaikwad A, Liu E, Verstovsek S, Prchal J, Prchal J. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol. 2007; 35(1): 32-8. PubMed

Olcaydu D, Skoda R, Looser R, Li S, Cazzola M, Pietra D, Passamonti F, Lippert E, Carillo S, Girodon F, Vannucchi A, Reading N, Prchal J, Ay C, Pabinger I, Gisslinger H, Kralovics R. The 'GGCC' haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia. 2009; 23(10): 1924-6. PubMed

Percy M, Sanchez M, Swierczek S, McMullin M, Mojica-Henshaw M, Muckenthaler M, Prchal J, Hentze M. Is congenital secondary erythrocytosis/polycythemia caused by activating mutations within the HIF-2 alpha iron-responsive element? Blood. 2007; 110(7): 2776-7. PubMed

Popat U, Frost A, Liu E, Guan Y, Durette A, Reddy V, Prchal J. High levels of circulating CD34 cells, dacrocytes, clonal hematopoiesis, and JAK2 mutation differentiate myelofibrosis with myeloid metaplasia from secondary myelofibrosis associated with pulmonary hypertension. Blood. 2006; 107(9): 3486-8. PubMed

Prchal J. Philadelphia chromosome-negative myeloproliferative disorders: an historical perspective. Hematology Am Soc Hematol Educ Program. 2008; 68. PubMed

Reading S, Lim M, Elenitoba-Johnson K. Detection of acquired Janus kinase 2 V617F mutation in myeloproliferative disorders by fluorescence melting curve analysis. Mol Diagn Ther. 2006; 10(5): 311-7. PubMed

Salama M, Swierczek S, Hickman K, Wilson A, Prchal J. Plasma quantitation of JAK2 mutation is not suitable as a clinical test: an artifact of storage. Blood. 2009; 114(1): 223-4; author reply 224. PubMed

Samuelson S, Parker C, Prchal J. Revised criteria for the myeloproliferative disorders: too much too soon? Blood. 2008; 111(3): 1741; author reply 1742. PubMed

Sergueeva A, Miasnikova G, Okhotin D, Levina A, Debebe Z, Ammosova T, Niu X, Romanova E, Nekhai S, DiBello P, Jacobsen D, Prchal J, Gordeuk V. Elevated homocysteine, glutathione and cysteinylglycine concentrations in patients homozygous for the Chuvash polycythemia VHL mutation. Haematologica. 2008; 93(2): 279-82. PubMed

Swierczek S, Nausova J, Jelinek J, Liu E, Roda P, Kucerova J, Jarosova M, Urbankova H, Indrak K, Prchal J, Divoky V. Concomitant JAK2 V617F-positive polycythemia vera and B-cell chronic lymphocytic leukemia in three patients originating from two separate hematopoietic stem cells. Am J Hematol. 2013; 88(2): 157-8. PubMed

Talpaz M, Paquette R, Afrin L, Hamburg S, Prchal J, Jamieson K, Terebelo H, Ortega G, Lyons R, Tiu R, Winton E, Natrajan K, Odenike O, Claxton D, Peng W, O'Neill P, Erickson-Viitanen S, Leopold L, Sandor V, Levy R, Kantarjian H, Verstovsek S. Interim analysis of safety and efficacy of ruxolitinib in patients with myelofibrosis and low platelet counts. J Hematol Oncol. 2013; 6(1): 81. PubMed

Tam C, Nussenzveig R, Popat U, Bueso-Ramos C, Thomas D, Cortes J, Champlin R, Ciurea S, Manshouri T, Pierce S, Kantarjian H, Verstovsek S. The natural history and treatment outcome of blast phase BCR-ABL- myeloproliferative neoplasms. Blood. 2008; 112(5): 1628-37. PubMed

Teman C, Wilson A, Perkins S, Hickman K, Prchal J, Salama M. Quantification of fibrosis and osteosclerosis in myeloproliferative neoplasms: a computer-assisted image study. Leuk Res. 2010; 34(7): 871-6. PubMed

Tomasic N, Piterkova L, Huff C, Bilic E, Yoon D, Miasnikova G, Sergueeva A, Niu X, Nekhai S, Gordeuk V, Prchal J. The phenotype of polycythemia due to Croatian homozygous VHL (571C>G:H191D) mutation is different from that of Chuvash polycythemia (VHL 598C>T:R200W). Haematologica. 2013; 98(4): 560-7. PubMed

Wang X, LeBlanc A, Gruenstein S, Xu M, Mascarenhas J, Panzera B, Wisch N, Parker C, Goldberg J, Prchal J, Hoffman R, Najfeld V. Clonal analyses define the relationships between chromosomal abnormalities and JAK2V617F in patients with Ph-negative myeloproliferative neoplasms. Exp Hematol. 2009; 37(10): 1194-200. PubMed

Xiong Z, Liu E, Yan Y, Silver R, Yang F, Chen I, Chen Y, Verstovsek S, Wang H, Prchal J, Yang X. An unconventional antigen translated by a novel internal ribosome entry site elicits antitumor humoral immune reactions. J Immunol. 2006; 177(7): 4907-16. PubMed

Xiong Z, Yan Y, Liu E, Silver R, Verstovsek S, Yang F, Wang H, Prchal J, Yang X. Novel tumor antigens elicit anti-tumor humoral immune reactions in a subset of patients with polycythemia vera. Clin Immunol. 2007; 122(3): 279-87. PubMed

Medical Reviewers

Last Update: February 2016